Conformal higher-order remeshing schemes for implicitly defined interface problems

نویسندگان

  • Samir Omerovic
  • Thomas-Peter Fries
چکیده

A new higher-order accurate method is proposed that combines the advantages of the classical p-version of the FEM on body-fitted meshes with embedded domain methods. A background mesh composed by higher-order Lagrange elements is used. Boundaries and interfaces are described implicitly by the level set method and are within elements. In the elements cut by the boundaries or interfaces, an automatic decomposition into higher-order accurate sub-elements is realized. Therefore, the zero level sets are detected and meshed in a first step which is called reconstruction. Then, based on the topological situation in the cut element, higher-order sub-elements are mapped to the two sides of the boundary or interface. The quality of the reconstruction and the mapping largely determines the properties of the resulting, automatically generated conforming mesh. It is found that optimal convergence rates are possible although the resulting sub-elements are not always well-shaped.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accurate, non-oscillatory, remeshing schemes for particle methods

In this article we propose and validate new remeshing schemes for the simulation of transport equations by particle methods. Particle remeshing is a common way to control the regularity of the particle distribution which is necessary to guarantee the accuracy of particle methods in presence of strong strain in a flow. Using a grid-based analysis, we derive remeshing schemes that can be used in ...

متن کامل

High Resolution Interface Representation in Numerical Simulation of Interface Problems Using Finite Element Methods

In fluid-structure interaction problems, the computational domain is divided into a fluid and a structure part. The points in which both subdomains intersect, is called the interface. Forces are coupled through the interface. Therefore, an exact representation of the interface is of great importance. In this talk, we present an approach which assures the representation of the interface with hig...

متن کامل

نگاشت همدیس در طرح‌های انگشتی سافمن- تیلور

 We studied the growth of viscous fingers as a Laplacian growth by conformal mapping. Viscous fingers grow due to Saffman-Taylor instability in the interface between two fluids, when a less viscous fluid pushes a more viscous fluid. As there was an interest in the rectangular Hele-Shaw cell, we solved the Laplacian equation with appropriate boundary conditions by means of conformal mapping tech...

متن کامل

Estimation of Fracture path in the Structures and the Influences of Non-singular term on crack propagation

In the present research, a fully Automatic crack propagation as one of the most complicated issues in fracture mechanics is studied whether there is an inclusion or no inclusion in the structures. In this study The Extended Finite Element Method (XFEM) is utilized because of several drawbacks in standard finite element method in crack propagation modeling. Estimated Crack paths are obtained by ...

متن کامل

A TRUST-REGION SEQUENTIAL QUADRATIC PROGRAMMING WITH NEW SIMPLE FILTER AS AN EFFICIENT AND ROBUST FIRST-ORDER RELIABILITY METHOD

The real-world applications addressing the nonlinear functions of multiple variables could be implicitly assessed through structural reliability analysis. This study establishes an efficient algorithm for resolving highly nonlinear structural reliability problems. To this end, first a numerical nonlinear optimization algorithm with a new simple filter is defined to locate and estimate the most ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1603.09678  شماره 

صفحات  -

تاریخ انتشار 2016